Designing Scalable and Creative Algorithms

Elliott Sprehn (Google, Inc.)
esprenn@gmail.com
http://www.elliottsprehn.com/blog/
http://www.elliottsprehn.com/cfbugs/

mailto:elliott@teratech.com
mailto:elliott@teratech.com
http://www.elliottsprehn.com/blog/
http://www.elliottsprehn.com/blog/
http://www.elliottsprehn.com/cfbugs/
http://www.elliottsprehn.com/cfbugs/
http://www.elliottsprehn.com/cfbugs/
http://www.elliottsprehn.com/cfbugs/

Algorithms

* Procedures for solving problems
e Common (Classical) Problems

e Sorting

* Merging

e Queries

eEvery Day Problems
e ox. Combine several XML files

Analysis Toolbox

eCategorizing Algorithms

e [heoretical
* Big-O Notation
e Disk Accesses

e Practical
e “\WWork” Done
e Hot Spots

Big-O

e Mathematical Notation

e Standard for Algorithm Analysis
e O(1) Constant Time
e O(n) Linear Time
e O(n?) Polynomial Time (Quadtratic)

Code Sample:
function sum100(array) { function employeeHierarchyList(employee) {
var value = 0; for(var list = [employee];
for(var i=1; i lte 100; ++i) employee.hasParent();
value += arrayl|i]; employee = employee.getParent())
return value; arrayAppend(list,employee.getParent());
} return list;

)

Disk Accesses

e Disk is extremely slow
* Measure algorithm by disk accesses element
e Difficult, your OS has lots of optimization

Code Sample: function writeNumbers(fileName,n) {

var handle = fileOpen(fileName,”write”);

// How many disk writes is this?

try {
for(var i=1; i lte n; ++i)
fileWrite(handle,i);

}finally {
fileClose(handle);
Y

}

| ets be Practical

eTheoretical Measurements

e Difficult to use in real world situations
e O(2n) is the same as O(500n)
e O(n?) is faster than O(500n) for small n

“Work” Done

o[- Xxtremely Rough Estimate
eCount steps per unit

eMinimize the number of steps
eProblem: Not all steps are equal

Hot Spots

e Steps that take longer
*[ind hot spots
eRemove or Reduce

Code Sample: ~ Var values = {};
for(vari=1;i<=n; ++i){

var value = randRange(0,100);
if(structKeyEXxists(values,value)) {
values[createUUID()] = true;
}else{
values[value] = true;

}
}

return structKeyArray(values);

Design Toollbox

e Structs

e Arrays

eQueries
eFunction Pointers
eComponents

Sorting

e Classical Problem

e Often handled by SQL in every day
applications

e Trust the API, it’s faster

e Conventional Algorithm Choices
e Not very relevant in most applications
e QuickSort
* MergeSort

10

Choose the Right Format to Sort

esArrays
* ArraySort()
e QuickSort() (CFLib)

eStructs
e StructSort()

eQueries
e QoQ order by

Arrays

s ArraySort()

e Fasy to sort simple values

eQuickSort()

e |mplement yourself (Wikipedia)
e Get from CFLIib
e Uses a callback function

ets create a sorting algorithm...

13

Merging

e Another Classical Problem
e Handled in SQL with union and join

e \What do we merge?
e Queries
e Arrays
o | sts
e Collections of objects

* How to define concept of merged?
e Sorted, Unique?

14

Choose the right Format to Merge

esArrays
e Several Algorithms

eStructs

e StructAppend()
e Concept of “merged” difficult.

eQueries
e QoQ union, join

ets create a merge algorithm...

16

Creative Algorithm Examples

e CFUnited Advisory Board Application
e Each Topic Worksheet stored in XML
¢ Need to merge and sort the data

e Transfer ORM
e ObjectManager.getObject()
e Creates the object graph of ORM type definitions
e Need to efficiently create the graph
e Must be thread safe
e SelectStatement.executeEvaluation()
e Uses cfquery to execute a compiled query
e Need to use cfqueryparam in arbitrary places in generated code
e XMLFileReader.search()
¢ Find configuration information in transfer.xml file
e Handle imports and includes in XML

17

Using Caching (Space vs Speed)

e [rades memory for “speed”

e Makes algorithm analysis difficult

e Cache hits/misses depends heavily on data

e How much “work” is saved by using the
cache?

e Cache Hot Spots

e Often provides the most benefits

e Cache Frequented Paths

18

Caching Examples

e Accelerate Framework
e Routing
e Compiles “routes” to regular expressions
e Generates URLs for routes (slow matching process)

e Shared Application Architecture
e getObject(name)
e Calls ColdSpring getBean(name)
e Not a Hot Spot
e |nefficient locking inside ColdSpring
e Called very often!

e CFUnited 2010 Website
e Schedule and Speakers queries are expensive
e Cache our RecordSet object with state

19

Questions

20

