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Algorithms

•Procedures for solving problems
•Common (Classical) Problems

•Sorting
•Merging
•Queries

•Every Day Problems
• ex. Combine several XML files
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Analysis Toolbox

•Categorizing Algorithms
•Theoretical

• Big-O Notation
• Disk Accesses

•Practical
• “Work” Done
• Hot Spots
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Big-O

• Mathematical Notation
• Standard for Algorithm Analysis

• O(1) Constant Time
• O(n) Linear Time
• O(n2) Polynomial Time (Quadtratic)

  function sum100(array) {
 ! var value = 0; 
! for(var i=1; i lte 100; ++i) 
! ! value += array[i];
! return value;
}

Code Sample:
  function employeeHierarchyList(employee) {
! for( var list = [employee]; 
!        employee.hasParent(); 
!        employee = employee.getParent() )

arrayAppend(list,employee.getParent());
! return list;
}
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Disk Accesses

• Disk is extremely slow
• Measure algorithm by disk accesses element

• Difficult, your OS has lots of optimization

  function writeNumbers(fileName,n) {
var handle = fileOpen(fileName,”write”);

// How many disk writes is this?
try {

for(var i=1; i lte n; ++i)
fileWrite(handle,i);

} finally {
fileClose(handle);

}!
}

Code Sample:
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Lets be Practical

•Theoretical Measurements
• Difficult to use in real world situations
• O(2n) is the same as O(500n)
• O(n2) is faster than O(500n) for small n
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“Work” Done

•Extremely Rough Estimate
•Count steps per unit
•Minimize the number of steps

•Problem: Not all steps are equal
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Hot Spots

•Steps that take longer
•Find hot spots
•Remove or Reduce

var values = {};
for( var i =1; i <= n; ++i ) {
! var value = randRange(0,100);
! if( structKeyExists(values,value) ) {
! ! values[createUUID()] = true;
! } else {
! ! values[value]  = true;
! }
}
return structKeyArray(values);

Code Sample:
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Design Toolbox

•Structs
•Arrays
•Queries
•Function Pointers
•Components
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Sorting

•Classical Problem
• Often handled by SQL in every day 

applications
• Trust the API, it’s faster

•Conventional Algorithm Choices
• Not very relevant in most applications
• QuickSort
• MergeSort
• ...

10



Choose the Right Format to Sort

•Arrays
•ArraySort()
•QuickSort() (CFLib)

•Structs
•StructSort()

•Queries
•QoQ order by
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Arrays

•ArraySort()
•Easy to sort simple values

•QuickSort()
•Implement yourself (Wikipedia)
•Get from CFLib
•Uses a callback function
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Lets create a sorting algorithm...
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Merging

•Another Classical Problem
• Handled in SQL with union and join

• What do we merge?
• Queries
• Arrays
• Lists
• Collections of objects

• How to define concept of merged?
• Sorted, Unique?
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Choose the right Format to Merge

•Arrays
•Several Algorithms

•Structs
•StructAppend()
•Concept of “merged” difficult.

•Queries
•QoQ union, join
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Lets create a merge algorithm...
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Creative Algorithm Examples

• CFUnited Advisory Board Application
• Each Topic Worksheet stored in XML
• Need to merge and sort the data

• Transfer ORM
• ObjectManager.getObject()

• Creates the object graph of ORM type definitions
• Need to efficiently create the graph
• Must be thread safe

• SelectStatement.executeEvaluation()
• Uses cfquery to execute a compiled query
• Need to use cfqueryparam in arbitrary places in generated code

• XMLFileReader.search()
• Find configuration information in transfer.xml file
• Handle imports and includes in XML
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Using Caching (Space vs Speed)

•Trades memory for “speed”
•Makes algorithm analysis difficult

• Cache hits/misses depends heavily on data
• How much “work” is saved by using the 

cache?

•Cache Hot Spots
• Often provides the most benefits

•Cache Frequented Paths

18



Caching Examples

• Accelerate Framework 
• Routing

• Compiles “routes” to regular expressions
• Generates URLs for routes (slow matching process)

• Shared Application Architecture
• getObject(name)

• Calls ColdSpring getBean(name)
• Not a Hot Spot
• Inefficient locking inside ColdSpring
• Called very often!

• CFUnited 2010 Website
• Schedule and Speakers queries are expensive
• Cache our RecordSet object with state
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Questions

?
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