
Designing Scalable and Creative Algorithms

Elliott Sprehn (Google, Inc.)
esprehn@gmail.com
http://www.elliottsprehn.com/blog/
http://www.elliottsprehn.com/cfbugs/

1

mailto:elliott@teratech.com
mailto:elliott@teratech.com
http://www.elliottsprehn.com/blog/
http://www.elliottsprehn.com/blog/
http://www.elliottsprehn.com/cfbugs/
http://www.elliottsprehn.com/cfbugs/
http://www.elliottsprehn.com/cfbugs/
http://www.elliottsprehn.com/cfbugs/

Algorithms

•Procedures for solving problems
•Common (Classical) Problems

•Sorting
•Merging
•Queries

•Every Day Problems
• ex. Combine several XML files

2

Analysis Toolbox

•Categorizing Algorithms
•Theoretical

• Big-O Notation
• Disk Accesses

•Practical
• “Work” Done
• Hot Spots

3

Big-O

• Mathematical Notation
• Standard for Algorithm Analysis

• O(1) Constant Time
• O(n) Linear Time
• O(n2) Polynomial Time (Quadtratic)

 function sum100(array) {
 ! var value = 0;
! for(var i=1; i lte 100; ++i)
! ! value += array[i];
! return value;
}

Code Sample:
 function employeeHierarchyList(employee) {
! for(var list = [employee];
! employee.hasParent();
! employee = employee.getParent())

arrayAppend(list,employee.getParent());
! return list;
}

4

Disk Accesses

• Disk is extremely slow
• Measure algorithm by disk accesses element

• Difficult, your OS has lots of optimization

 function writeNumbers(fileName,n) {
var handle = fileOpen(fileName,”write”);

// How many disk writes is this?
try {

for(var i=1; i lte n; ++i)
fileWrite(handle,i);

} finally {
fileClose(handle);

}!
}

Code Sample:

5

Lets be Practical

•Theoretical Measurements
• Difficult to use in real world situations
• O(2n) is the same as O(500n)
• O(n2) is faster than O(500n) for small n

6

“Work” Done

•Extremely Rough Estimate
•Count steps per unit
•Minimize the number of steps

•Problem: Not all steps are equal

7

Hot Spots

•Steps that take longer
•Find hot spots
•Remove or Reduce

var values = {};
for(var i =1; i <= n; ++i) {
! var value = randRange(0,100);
! if(structKeyExists(values,value)) {
! ! values[createUUID()] = true;
! } else {
! ! values[value] = true;
! }
}
return structKeyArray(values);

Code Sample:

8

Design Toolbox

•Structs
•Arrays
•Queries
•Function Pointers
•Components

9

Sorting

•Classical Problem
• Often handled by SQL in every day

applications
• Trust the API, it’s faster

•Conventional Algorithm Choices
• Not very relevant in most applications
• QuickSort
• MergeSort
• ...

10

Choose the Right Format to Sort

•Arrays
•ArraySort()
•QuickSort() (CFLib)

•Structs
•StructSort()

•Queries
•QoQ order by

11

Arrays

•ArraySort()
•Easy to sort simple values

•QuickSort()
•Implement yourself (Wikipedia)
•Get from CFLib
•Uses a callback function

12

Lets create a sorting algorithm...

13

Merging

•Another Classical Problem
• Handled in SQL with union and join

• What do we merge?
• Queries
• Arrays
• Lists
• Collections of objects

• How to define concept of merged?
• Sorted, Unique?

14

Choose the right Format to Merge

•Arrays
•Several Algorithms

•Structs
•StructAppend()
•Concept of “merged” difficult.

•Queries
•QoQ union, join

15

Lets create a merge algorithm...

16

Creative Algorithm Examples

• CFUnited Advisory Board Application
• Each Topic Worksheet stored in XML
• Need to merge and sort the data

• Transfer ORM
• ObjectManager.getObject()

• Creates the object graph of ORM type definitions
• Need to efficiently create the graph
• Must be thread safe

• SelectStatement.executeEvaluation()
• Uses cfquery to execute a compiled query
• Need to use cfqueryparam in arbitrary places in generated code

• XMLFileReader.search()
• Find configuration information in transfer.xml file
• Handle imports and includes in XML

17

Using Caching (Space vs Speed)

•Trades memory for “speed”
•Makes algorithm analysis difficult

• Cache hits/misses depends heavily on data
• How much “work” is saved by using the

cache?

•Cache Hot Spots
• Often provides the most benefits

•Cache Frequented Paths

18

Caching Examples

• Accelerate Framework
• Routing

• Compiles “routes” to regular expressions
• Generates URLs for routes (slow matching process)

• Shared Application Architecture
• getObject(name)

• Calls ColdSpring getBean(name)
• Not a Hot Spot
• Inefficient locking inside ColdSpring
• Called very often!

• CFUnited 2010 Website
• Schedule and Speakers queries are expensive
• Cache our RecordSet object with state

19

Questions

?
20

